/* ** sha1.c ** ** Contains all of the SHA1 functions: SHA1Transform, SHA1Init, SHA1Update, and SHA1Final. ** Make sure to define _LITTLE_ENDIAN if running on a little endian machine and NOT to ** define it otherwise. ** ** Copyright NTT MCL, 2000. ** ** Satomi Okazaki ** Security Group, NTT MCL ** November 1999 ** ************************** ** 13 December 1999. In SHA1Transform, changed "buffer" to be const. ** In SHA1Update, changed "data to be const. -- S.O. */ #include "sha1.h" #define _LITTLE_ENDIAN /* should be defined if so */ /* Rotation of "value" by "bits" to the left */ #define rotLeft(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* Basic SHA1 functions */ #define f(u,v,w) (((u) & (v)) | ((~u) & (w))) #define g(u,v,w) (((u) & (v)) | ((u) & (w)) | ((v) & (w))) #define h(u,v,w) ((u) ^ (v) ^ (w)) /* These are the 16 4-byte words of the 64-byte block */ #ifdef _LITTLE_ENDIAN /* Reverse the order of the bytes in the i-th 4-byte word */ #define x(i) (block->l[i] = (rotLeft(block->l[i], 24)& 0xff00ff00) \ | (rotLeft(block->l[i], 8) & 0x00ff00ff)) #else #define x(i) (block->l[i]) #endif /* Used in expanding from a 16 word block into an 80 word block */ #define X(i) (block->l[(i)%16] = rotLeft (block->l[((i)-3)%16] ^ block->l[((i)-8)%16] \ ^ block->l[((i)-14)%16] ^ block->l[((i)-16)%16],1)) /* (R0+R1), R2, R3, R4 are the different round operations used in SHA1 */ #define R0(a, b, c, d, e, i) { \ (e) += f((b), (c), (d)) + (x(i)) + 0x5A827999 + rotLeft((a),5); \ (b) = rotLeft((b), 30); \ } #define R1(a, b, c, d, e, i) { \ (e) += f((b), (c), (d)) + (X(i)) + 0x5A827999 + rotLeft((a),5); \ (b) = rotLeft((b), 30); \ } #define R2(a, b, c, d, e, i) { \ (e) += h((b), (c), (d)) + (X(i)) + 0x6ED9EBA1 + rotLeft((a),5); \ (b) = rotLeft((b), 30); \ } #define R3(a, b, c, d, e, i) { \ (e) += g((b), (c), (d)) + (X(i)) + 0x8F1BBCDC + rotLeft((a),5); \ (b) = rotLeft((b), 30); \ } #define R4(a, b, c, d, e, i) { \ (e) += h((b), (c), (d)) + (X(i)) + 0xCA62C1D6 + rotLeft((a),5); \ (b) = rotLeft((b), 30); \ } /* Hashes a single 512-bit block. This is the compression function - the core of the algorithm. **/ void SHA1Transform( unsigned long state[5], const unsigned char buffer[SHA1_BLOCKSIZE] ) { unsigned long a, b, c, d, e; typedef union { unsigned char c[64]; unsigned long l[16]; } CHAR64LONG16; /* This is for the X array */ CHAR64LONG16* block = (CHAR64LONG16*)buffer; /* Initialize working variables */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. */ /* Round 1 */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e, 10); R0(e,a,b,c,d, 11); R0(d,e,a,b,c, 12); R0(c,d,e,a,b, 13); R0(b,c,d,e,a, 14); R0(a,b,c,d,e, 15); R1(e,a,b,c,d, 16); R1(d,e,a,b,c, 17); R1(c,d,e,a,b, 18); R1(b,c,d,e,a, 19); /* Round 2 */ R2(a,b,c,d,e, 20); R2(e,a,b,c,d, 21); R2(d,e,a,b,c, 22); R2(c,d,e,a,b, 23); R2(b,c,d,e,a, 24); R2(a,b,c,d,e, 25); R2(e,a,b,c,d, 26); R2(d,e,a,b,c, 27); R2(c,d,e,a,b, 28); R2(b,c,d,e,a, 29); R2(a,b,c,d,e, 30); R2(e,a,b,c,d, 31); R2(d,e,a,b,c, 32); R2(c,d,e,a,b, 33); R2(b,c,d,e,a, 34); R2(a,b,c,d,e, 35); R2(e,a,b,c,d, 36); R2(d,e,a,b,c, 37); R2(c,d,e,a,b, 38); R2(b,c,d,e,a, 39); /* Round 3 */ R3(a,b,c,d,e, 40); R3(e,a,b,c,d, 41); R3(d,e,a,b,c, 42); R3(c,d,e,a,b, 43); R3(b,c,d,e,a, 44); R3(a,b,c,d,e, 45); R3(e,a,b,c,d, 46); R3(d,e,a,b,c, 47); R3(c,d,e,a,b, 48); R3(b,c,d,e,a, 49); R3(a,b,c,d,e, 50); R3(e,a,b,c,d, 51); R3(d,e,a,b,c, 52); R3(c,d,e,a,b, 53); R3(b,c,d,e,a, 54); R3(a,b,c,d,e, 55); R3(e,a,b,c,d, 56); R3(d,e,a,b,c, 57); R3(c,d,e,a,b, 58); R3(b,c,d,e,a, 59); /* Round 4 */ R4(a,b,c,d,e, 60); R4(e,a,b,c,d, 61); R4(d,e,a,b,c, 62); R4(c,d,e,a,b, 63); R4(b,c,d,e,a, 64); R4(a,b,c,d,e, 65); R4(e,a,b,c,d, 66); R4(d,e,a,b,c, 67); R4(c,d,e,a,b, 68); R4(b,c,d,e,a, 69); R4(a,b,c,d,e, 70); R4(e,a,b,c,d, 71); R4(d,e,a,b,c, 72); R4(c,d,e,a,b, 73); R4(b,c,d,e,a, 74); R4(a,b,c,d,e, 75); R4(e,a,b,c,d, 76); R4(d,e,a,b,c, 77); R4(c,d,e,a,b, 78); R4(b,c,d,e,a, 79); /* Update the chaining values */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /* SHA1Init - Initialize new context. **/ void SHA1Init( SHA1_CTX* context ) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } /* Run your data through this. This will call the compression function SHA1Transform for each ** 64-byte block of data. **/ void SHA1Update( SHA1_CTX* context, const unsigned char* data, unsigned long dataLen ) { unsigned long numByteDataProcessed; /* Number of bytes processed so far */ unsigned long numByteInBuffMod64; /* Number of bytes in the buffer mod 64 */ numByteInBuffMod64 = (context->count[0] >> 3) % 64; /* Adding in the number of bits of data */ if ((context->count[0] += dataLen << 3) < (dataLen << 3)) { context->count[1]++; /* add in the carry bit */ } context->count[1] += (dataLen >> 29); /* If there is at least one block to be processed... */ if ((numByteInBuffMod64 + dataLen) > 63) { /* Copy over 64-numByteInBuffMod64 bytes of data to the end of buffer */ memcpy(&context->buffer[numByteInBuffMod64], data, (numByteDataProcessed = 64 - numByteInBuffMod64)); /* Perform the transform on the buffer */ SHA1Transform(context->state, context->buffer); /* As long as there are 64-bit blocks of data remaining, transform each one. */ for ( ; numByteDataProcessed + 63 < dataLen; numByteDataProcessed += 64) { SHA1Transform(context->state, &data[numByteDataProcessed]); } numByteInBuffMod64 = 0; } /* Else there is not enough to process one block. */ else numByteDataProcessed = 0; /* Copy over the remaining data into the buffer */ memcpy(&context->buffer[numByteInBuffMod64], &data[numByteDataProcessed], dataLen - numByteDataProcessed); } /* Add padding and return the message digest. **/ void SHA1Final( unsigned char digest[SHA1_DIGESTSIZE], SHA1_CTX* context ) { unsigned long i, j; unsigned char numBits[8]; /* Record the number of bits */ for (i = 1, j = 0; j < 8; i--, j += 4) { numBits[j] = (unsigned char)((context->count[i] >> 24) & 0xff); numBits[j+1] = (unsigned char)((context->count[i] >> 16) & 0xff); numBits[j+2] = (unsigned char)((context->count[i] >> 8) & 0xff); numBits[j+3] = (unsigned char)(context->count[i] & 0xff); } /* Add padding */ SHA1Update(context, (unsigned char *)"\200", 1); while ((context->count[0] & 504) != 448) SHA1Update(context, (unsigned char *)"\0", 1); /* Append length */ SHA1Update(context, numBits, 8); /* Should cause a SHA1Transform() */ /* Store state in digest */ for (i = 0, j = 0; j < 20; i++, j += 4) { digest[j] = (unsigned char)((context->state[i] >> 24) & 0xff); digest[j+1] = (unsigned char)((context->state[i] >> 16) & 0xff); digest[j+2] = (unsigned char)((context->state[i] >> 8) & 0xff); digest[j+3] = (unsigned char)((context->state[i]) & 0xff); } /* Wipe variables */ i = 0; j = 0; memset(context->buffer, 0, 64); memset(context->state, 0, 20); memset(context->count, 0, 8); memset(&numBits, 0, 8); }