friidump/libmultihash/sha1.c
2013-11-01 12:26:04 -04:00

231 lines
8 KiB
C

/*
** sha1.c
**
** Contains all of the SHA1 functions: SHA1Transform, SHA1Init, SHA1Update, and SHA1Final.
** Make sure to define _LITTLE_ENDIAN if running on a little endian machine and NOT to
** define it otherwise.
**
** Copyright NTT MCL, 2000.
**
** Satomi Okazaki
** Security Group, NTT MCL
** November 1999
**
**************************
** 13 December 1999. In SHA1Transform, changed "buffer" to be const.
** In SHA1Update, changed "data to be const. -- S.O.
*/
#include "sha1.h"
#define _LITTLE_ENDIAN /* should be defined if so */
/* Rotation of "value" by "bits" to the left */
#define rotLeft(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* Basic SHA1 functions */
#define f(u,v,w) (((u) & (v)) | ((~u) & (w)))
#define g(u,v,w) (((u) & (v)) | ((u) & (w)) | ((v) & (w)))
#define h(u,v,w) ((u) ^ (v) ^ (w))
/* These are the 16 4-byte words of the 64-byte block */
#ifdef _LITTLE_ENDIAN
/* Reverse the order of the bytes in the i-th 4-byte word */
#define x(i) (block->l[i] = (rotLeft(block->l[i], 24)& 0xff00ff00) \
| (rotLeft(block->l[i], 8) & 0x00ff00ff))
#else
#define x(i) (block->l[i])
#endif
/* Used in expanding from a 16 word block into an 80 word block */
#define X(i) (block->l[(i)%16] = rotLeft (block->l[((i)-3)%16] ^ block->l[((i)-8)%16] \
^ block->l[((i)-14)%16] ^ block->l[((i)-16)%16],1))
/* (R0+R1), R2, R3, R4 are the different round operations used in SHA1 */
#define R0(a, b, c, d, e, i) { \
(e) += f((b), (c), (d)) + (x(i)) + 0x5A827999 + rotLeft((a),5); \
(b) = rotLeft((b), 30); \
}
#define R1(a, b, c, d, e, i) { \
(e) += f((b), (c), (d)) + (X(i)) + 0x5A827999 + rotLeft((a),5); \
(b) = rotLeft((b), 30); \
}
#define R2(a, b, c, d, e, i) { \
(e) += h((b), (c), (d)) + (X(i)) + 0x6ED9EBA1 + rotLeft((a),5); \
(b) = rotLeft((b), 30); \
}
#define R3(a, b, c, d, e, i) { \
(e) += g((b), (c), (d)) + (X(i)) + 0x8F1BBCDC + rotLeft((a),5); \
(b) = rotLeft((b), 30); \
}
#define R4(a, b, c, d, e, i) { \
(e) += h((b), (c), (d)) + (X(i)) + 0xCA62C1D6 + rotLeft((a),5); \
(b) = rotLeft((b), 30); \
}
/* Hashes a single 512-bit block. This is the compression function - the core of the algorithm.
**/
void SHA1Transform(
unsigned long state[5],
const unsigned char buffer[SHA1_BLOCKSIZE]
)
{
unsigned long a, b, c, d, e;
typedef union {
unsigned char c[64];
unsigned long l[16];
} CHAR64LONG16;
/* This is for the X array */
CHAR64LONG16* block = (CHAR64LONG16*)buffer;
/* Initialize working variables */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. */
/* Round 1 */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e, 10); R0(e,a,b,c,d, 11);
R0(d,e,a,b,c, 12); R0(c,d,e,a,b, 13); R0(b,c,d,e,a, 14); R0(a,b,c,d,e, 15);
R1(e,a,b,c,d, 16); R1(d,e,a,b,c, 17); R1(c,d,e,a,b, 18); R1(b,c,d,e,a, 19);
/* Round 2 */
R2(a,b,c,d,e, 20); R2(e,a,b,c,d, 21); R2(d,e,a,b,c, 22); R2(c,d,e,a,b, 23);
R2(b,c,d,e,a, 24); R2(a,b,c,d,e, 25); R2(e,a,b,c,d, 26); R2(d,e,a,b,c, 27);
R2(c,d,e,a,b, 28); R2(b,c,d,e,a, 29); R2(a,b,c,d,e, 30); R2(e,a,b,c,d, 31);
R2(d,e,a,b,c, 32); R2(c,d,e,a,b, 33); R2(b,c,d,e,a, 34); R2(a,b,c,d,e, 35);
R2(e,a,b,c,d, 36); R2(d,e,a,b,c, 37); R2(c,d,e,a,b, 38); R2(b,c,d,e,a, 39);
/* Round 3 */
R3(a,b,c,d,e, 40); R3(e,a,b,c,d, 41); R3(d,e,a,b,c, 42); R3(c,d,e,a,b, 43);
R3(b,c,d,e,a, 44); R3(a,b,c,d,e, 45); R3(e,a,b,c,d, 46); R3(d,e,a,b,c, 47);
R3(c,d,e,a,b, 48); R3(b,c,d,e,a, 49); R3(a,b,c,d,e, 50); R3(e,a,b,c,d, 51);
R3(d,e,a,b,c, 52); R3(c,d,e,a,b, 53); R3(b,c,d,e,a, 54); R3(a,b,c,d,e, 55);
R3(e,a,b,c,d, 56); R3(d,e,a,b,c, 57); R3(c,d,e,a,b, 58); R3(b,c,d,e,a, 59);
/* Round 4 */
R4(a,b,c,d,e, 60); R4(e,a,b,c,d, 61); R4(d,e,a,b,c, 62); R4(c,d,e,a,b, 63);
R4(b,c,d,e,a, 64); R4(a,b,c,d,e, 65); R4(e,a,b,c,d, 66); R4(d,e,a,b,c, 67);
R4(c,d,e,a,b, 68); R4(b,c,d,e,a, 69); R4(a,b,c,d,e, 70); R4(e,a,b,c,d, 71);
R4(d,e,a,b,c, 72); R4(c,d,e,a,b, 73); R4(b,c,d,e,a, 74); R4(a,b,c,d,e, 75);
R4(e,a,b,c,d, 76); R4(d,e,a,b,c, 77); R4(c,d,e,a,b, 78); R4(b,c,d,e,a, 79);
/* Update the chaining values */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context.
**/
void SHA1Init(
SHA1_CTX* context
)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. This will call the compression function SHA1Transform for each
** 64-byte block of data.
**/
void SHA1Update(
SHA1_CTX* context,
const unsigned char* data,
unsigned long dataLen
)
{
unsigned long numByteDataProcessed; /* Number of bytes processed so far */
unsigned long numByteInBuffMod64; /* Number of bytes in the buffer mod 64 */
numByteInBuffMod64 = (context->count[0] >> 3) % 64;
/* Adding in the number of bits of data */
if ((context->count[0] += dataLen << 3) < (dataLen << 3)) {
context->count[1]++; /* add in the carry bit */
}
context->count[1] += (dataLen >> 29);
/* If there is at least one block to be processed... */
if ((numByteInBuffMod64 + dataLen) > 63) {
/* Copy over 64-numByteInBuffMod64 bytes of data to the end of buffer */
memcpy(&context->buffer[numByteInBuffMod64], data,
(numByteDataProcessed = 64 - numByteInBuffMod64));
/* Perform the transform on the buffer */
SHA1Transform(context->state, context->buffer);
/* As long as there are 64-bit blocks of data remaining, transform each one. */
for ( ; numByteDataProcessed + 63 < dataLen; numByteDataProcessed += 64) {
SHA1Transform(context->state, &data[numByteDataProcessed]);
}
numByteInBuffMod64 = 0;
}
/* Else there is not enough to process one block. */
else
numByteDataProcessed = 0;
/* Copy over the remaining data into the buffer */
memcpy(&context->buffer[numByteInBuffMod64], &data[numByteDataProcessed],
dataLen - numByteDataProcessed);
}
/* Add padding and return the message digest.
**/
void SHA1Final(
unsigned char digest[SHA1_DIGESTSIZE],
SHA1_CTX* context
)
{
unsigned long i, j;
unsigned char numBits[8];
/* Record the number of bits */
for (i = 1, j = 0; j < 8; i--, j += 4) {
numBits[j] = (unsigned char)((context->count[i] >> 24) & 0xff);
numBits[j+1] = (unsigned char)((context->count[i] >> 16) & 0xff);
numBits[j+2] = (unsigned char)((context->count[i] >> 8) & 0xff);
numBits[j+3] = (unsigned char)(context->count[i] & 0xff);
}
/* Add padding */
SHA1Update(context, (unsigned char *)"\200", 1);
while ((context->count[0] & 504) != 448)
SHA1Update(context, (unsigned char *)"\0", 1);
/* Append length */
SHA1Update(context, numBits, 8); /* Should cause a SHA1Transform() */
/* Store state in digest */
for (i = 0, j = 0; j < 20; i++, j += 4) {
digest[j] = (unsigned char)((context->state[i] >> 24) & 0xff);
digest[j+1] = (unsigned char)((context->state[i] >> 16) & 0xff);
digest[j+2] = (unsigned char)((context->state[i] >> 8) & 0xff);
digest[j+3] = (unsigned char)((context->state[i]) & 0xff);
}
/* Wipe variables */
i = 0;
j = 0;
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(&numBits, 0, 8);
}